Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 2, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36631879

RESUMO

BACKGROUND: Genetic variants can modulate phenotypic outcomes via epigenetic intermediates, for example at methylation quantitative trait loci (mQTL). We present the first large-scale assessment of mQTL at human genomic regions selected for interindividual variation in CpG methylation, which we call correlated regions of systemic interindividual variation (CoRSIVs). These can be assayed in blood DNA and do not reflect interindividual variation in cellular composition. RESULTS: We use target-capture bisulfite sequencing to assess DNA methylation at 4086 CoRSIVs in multiple tissues from each of 188 donors in the NIH Gene-Tissue Expression (GTEx) program. At CoRSIVs, DNA methylation in peripheral blood correlates with methylation and gene expression in internal organs. We also discover unprecedented mQTL at these regions. Genetic influences on CoRSIV methylation are extremely strong (median R2=0.76), cumulatively comprising over 70-fold more human mQTL than detected in the most powerful previous study. Moreover, mQTL beta coefficients at CoRSIVs are highly skewed (i.e., the major allele predicts higher methylation). Both surprising findings are independently validated in a cohort of 47 non-GTEx individuals. Genomic regions flanking CoRSIVs show long-range enrichments for LINE-1 and LTR transposable elements; the skewed beta coefficients may therefore reflect evolutionary selection of genetic variants that promote their methylation and silencing. Analyses of GWAS summary statistics show that mQTL polymorphisms at CoRSIVs are associated with metabolic and other classes of disease. CONCLUSIONS: A focus on systemic interindividual epigenetic variants, clearly enhanced in mQTL content, should likewise benefit studies attempting to link human epigenetic variation to the risk of disease.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Humanos , Metilação de DNA , Locos de Características Quantitativas , Ilhas de CpG , Epigênese Genética
2.
Sci Adv ; 7(45): eabj1561, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739318

RESUMO

PAX8 is a key thyroid transcription factor implicated in thyroid gland differentiation and function, and PAX8 gene methylation is reported to be sensitive to the periconceptional environment. Using a novel recall-by-epigenotype study in Gambian children, we found that PAX8 hypomethylation at age 2 years is associated with a 21% increase in thyroid volume and an increase in free thyroxine (T4) at 5 to 8 years, the latter equivalent to 8.4% of the normal range. Free T4 was associated with a decrease in DXA-derived body fat and bone mineral density. Furthermore, offspring PAX8 methylation was associated with periconceptional maternal nutrition, and methylation variability was influenced by genotype, suggesting that sensitivity to environmental exposures may be under partial genetic control. Together, our results demonstrate a possible link between early environment, PAX8 gene methylation and thyroid gland development and function, with potential implications for early embryonic programming of thyroid-related health and disease.

3.
Genome Biol ; 21(1): 156, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605651

RESUMO

BACKGROUND: The traditional approach to studying the epigenetic mechanism CpG methylation in tissue samples is to identify regions of concordant differential methylation spanning multiple CpG sites (differentially methylated regions). Variation limited to single or small numbers of CpGs has been assumed to reflect stochastic processes. To test this, we developed software, Cluster-Based analysis of CpG methylation (CluBCpG), and explored variation in read-level CpG methylation patterns in whole genome bisulfite sequencing data. RESULTS: Analysis of both human and mouse whole genome bisulfite sequencing datasets reveals read-level signatures associated with cell type and cell type-specific biological processes. These signatures, which are mostly orthogonal to classical differentially methylated regions, are enriched at cell type-specific enhancers and allow estimation of proportional cell composition in synthetic mixtures and improved prediction of gene expression. In tandem, we developed a machine learning algorithm, Precise Read-Level Imputation of Methylation (PReLIM), to increase coverage of existing whole genome bisulfite sequencing datasets by imputing CpG methylation states on individual sequencing reads. PReLIM both improves CluBCpG coverage and performance and enables identification of novel differentially methylated regions, which we independently validate. CONCLUSIONS: Our data indicate that, rather than stochastic variation, read-level CpG methylation patterns in tissue whole genome bisulfite sequencing libraries reflect cell type. Accordingly, these new computational tools should lead to an improved understanding of epigenetic regulation by DNA methylation.


Assuntos
Células/metabolismo , Biologia Computacional/métodos , Metilação de DNA , Software , Sequenciamento Completo do Genoma , Adulto , Idoso , Animais , Ilhas de CpG , Feminino , Expressão Gênica , Humanos , Aprendizado de Máquina , Masculino , Camundongos , Especificidade de Órgãos
4.
Nat Commun ; 10(1): 5364, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792207

RESUMO

DNA methylation regulates cell type-specific gene expression. Here, in a transgenic mouse model, we show that deletion of the gene encoding DNA methyltransferase Dnmt3a in hypothalamic AgRP neurons causes a sedentary phenotype characterized by reduced voluntary exercise and increased adiposity. Whole-genome bisulfite sequencing (WGBS) and transcriptional profiling in neuronal nuclei from the arcuate nucleus of the hypothalamus (ARH) reveal differentially methylated genomic regions and reduced expression of AgRP neuron-associated genes in knockout mice. We use read-level analysis of WGBS data to infer putative ARH neural cell types affected by the knockout, and to localize promoter hypomethylation and increased expression of the growth factor Bmp7 to AgRP neurons, suggesting a role for aberrant TGF-ß signaling in the development of this phenotype. Together, these data demonstrate that DNA methylation in AgRP neurons is required for their normal epigenetic development and neuron-specific gene expression profiles, and regulates voluntary exercise behavior.


Assuntos
Metilação de DNA , Neurônios/metabolismo , Condicionamento Físico Animal , Adiposidade , Animais , Comportamento Animal , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Feminino , Hipotálamo/citologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais
5.
Environ Epigenet ; 5(3): dvz015, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31528363

RESUMO

Pancreatic islets of type 2 diabetes patients have altered DNA methylation, contributing to islet dysfunction and the onset of type 2 diabetes. The cause of these epigenetic alterations is largely unknown. We set out to test whether (i) islet DNA methylation would change with aging and (ii) early postnatal overnutrition would persistently alter DNA methylation. We performed genome-scale DNA methylation profiling in islets from postnatally over-nourished (suckled in a small litter) and control male mice at both postnatal day 21 and postnatal day 180. DNA methylation differences were validated using quantitative bisulfite pyrosequencing, and associations with expression were assessed by RT-PCR. We discovered that genomic regions that are hypermethylated in exocrine relative to endocrine pancreas tend to gain methylation in islets during aging (R 2 = 0.33, P < 0.0001). These methylation differences were inversely correlated with mRNA expression of genes relevant to ß cell function [including Rab3b (Ras-related protein Rab-3B), Cacnb3 (voltage-dependent L-type calcium channel subunit 3), Atp2a3 (sarcoplasmic/endoplasmic reticulum calcium ATPase 3) and Ins2 (insulin 2)]. Relative to control, small litter islets showed DNA methylation differences directly after weaning and in adulthood, but few of these were present at both ages. Surprisingly, we found substantial overlap of methylated loci caused by aging and small litter feeding, suggesting that the age-associated gain of DNA methylation happened much earlier in small litter islets than control islets. Our results provide the novel insights that aging-associated DNA methylation increases reflect an epigenetic drift toward the exocrine pancreas epigenome, and that early postnatal overnutrition may accelerate this process.

6.
Genome Biol ; 20(1): 105, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31155008

RESUMO

BACKGROUND: DNA methylation is thought to be an important determinant of human phenotypic variation, but its inherent cell type specificity has impeded progress on this question. At exceptional genomic regions, interindividual variation in DNA methylation occurs systemically. Like genetic variants, systemic interindividual epigenetic variants are stable, can influence phenotype, and can be assessed in any easily biopsiable DNA sample. We describe an unbiased screen for human genomic regions at which interindividual variation in DNA methylation is not tissue-specific. RESULTS: For each of 10 donors from the NIH Genotype-Tissue Expression (GTEx) program, CpG methylation is measured by deep whole-genome bisulfite sequencing of genomic DNA from tissues representing the three germ layer lineages: thyroid (endoderm), heart (mesoderm), and brain (ectoderm). We develop a computational algorithm to identify genomic regions at which interindividual variation in DNA methylation is consistent across all three lineages. This approach identifies 9926 correlated regions of systemic interindividual variation (CoRSIVs). These regions, comprising just 0.1% of the human genome, are inter-correlated over long genomic distances, associated with transposable elements and subtelomeric regions, conserved across diverse human ethnic groups, sensitive to periconceptional environment, and associated with genes implicated in a broad range of human disorders and phenotypes. CoRSIV methylation in one tissue can predict expression of associated genes in other tissues. CONCLUSIONS: In addition to charting a previously unexplored molecular level of human individuality, this atlas of human CoRSIVs provides a resource for future population-based investigations into how interindividual epigenetic variation modulates risk of disease.


Assuntos
Metilação de DNA , Epigênese Genética , Genoma Humano , Idoso , Encéfalo/metabolismo , Estudos de Casos e Controles , Criança , Doença/genética , Feminino , Gâmbia , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Estações do Ano , Glândula Tireoide/metabolismo
7.
Genome Biol ; 19(1): 2, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29310692

RESUMO

BACKGROUND: Monozygotic twins have long been studied to estimate heritability and explore epigenetic influences on phenotypic variation. The phenotypic and epigenetic similarities of monozygotic twins have been assumed to be largely due to their genetic identity. RESULTS: Here, by analyzing data from a genome-scale study of DNA methylation in monozygotic and dizygotic twins, we identified genomic regions at which the epigenetic similarity of monozygotic twins is substantially greater than can be explained by their genetic identity. This "epigenetic supersimilarity" apparently results from locus-specific establishment of epigenotype prior to embryo cleavage during twinning. Epigenetically supersimilar loci exhibit systemic interindividual epigenetic variation and plasticity to periconceptional environment and are enriched in sub-telomeric regions. In case-control studies nested in a prospective cohort, blood DNA methylation at these loci years before diagnosis is associated with risk of developing several types of cancer. CONCLUSIONS: These results establish a link between early embryonic epigenetic development and adult disease. More broadly, epigenetic supersimilarity is a previously unrecognized phenomenon that may contribute to the phenotypic similarity of monozygotic twins.


Assuntos
Epigênese Genética , Gêmeos Monozigóticos/genética , Ilhas de CpG , DNA/sangue , Metilação de DNA , Genoma Humano , Humanos , Modelos Genéticos , Neoplasias/genética , Gêmeos Dizigóticos
8.
Hum Mol Genet ; 25(2): 223-32, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26566671

RESUMO

Understanding epigenetic differences that distinguish neurons and glia is of fundamental importance to the nascent field of neuroepigenetics. A recent study used genome-wide bisulfite sequencing to survey differences in DNA methylation between these two cell types, in both humans and mice. That study minimized the importance of cell type-specific differences in CpG methylation, claiming these are restricted to localized genomic regions, and instead emphasized that widespread and highly conserved differences in non-CpG methylation distinguish neurons and glia. We reanalyzed the data from that study and came to markedly different conclusions. In particular, we found widespread cell type-specific differences in CpG methylation, with a genome-wide tendency for neuronal CpG-hypermethylation punctuated by regions of glia-specific hypermethylation. Alarmingly, our analysis indicated that the majority of genes identified by the primary study as exhibiting cell type-specific CpG methylation differences were misclassified. To verify the accuracy of our analysis, we isolated neuronal and glial DNA from mouse cortex and performed quantitative bisulfite pyrosequencing at nine loci. The pyrosequencing results corroborated our analysis, without exception. Most interestingly, we found that gene-associated neuron vs. glia CpG methylation differences are highly conserved across human and mouse, and are very likely to be functional. In addition to underscoring the importance of independent verification to confirm the conclusions of genome-wide epigenetic analyses, our data indicate that CpG methylation plays a major role in neuroepigenetics, and that the mouse is likely an excellent model in which to study the role of DNA methylation in human neurodevelopment and disease.


Assuntos
Ilhas de CpG , Metilação de DNA , Genoma , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Evolução Molecular , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Sequência de DNA , Sulfitos
9.
Genome Biol ; 16: 211, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26420038

RESUMO

BACKGROUND: DNA methylation is an epigenetic mechanism central to development and maintenance of complex mammalian tissues, but our understanding of its role in intestinal development is limited. RESULTS: We use whole genome bisulfite sequencing, and find that differentiation of mouse colonic intestinal stem cells to intestinal epithelium is not associated with major changes in DNA methylation. However, we detect extensive dynamic epigenetic changes in intestinal stem cells and their progeny during the suckling period, suggesting postnatal epigenetic development in this stem cell population. We find that postnatal DNA methylation increases at 3' CpG islands (CGIs) correlate with transcriptional activation of glycosylation genes responsible for intestinal maturation. To directly test whether 3' CGI methylation regulates transcription, we conditionally disrupted two major DNA methyltransferases, Dnmt1 or Dnmt3a, in fetal and adult intestine. Deficiency of Dnmt1 causes severe intestinal abnormalities in neonates and disrupts crypt homeostasis in adults, whereas Dnmt3a loss was compatible with intestinal development. These studies reveal that 3' CGI methylation is functionally involved in the regulation of transcriptional activation in vivo, and that Dnmt1 is a critical regulator of postnatal epigenetic changes in intestinal stem cells. Finally, we show that postnatal 3' CGI methylation and associated gene activation in intestinal epithelial cells are significantly altered by germ-free conditions. CONCLUSIONS: Our results demonstrate that the suckling period is critical for epigenetic development of intestinal stem cells, with potential important implications for lifelong gut health, and that the gut microbiome guides and/or facilitates these postnatal epigenetic processes.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Epigênese Genética , Intestinos/microbiologia , Células-Tronco/metabolismo , Animais , Animais Lactentes/genética , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Mucosa Intestinal/metabolismo , Camundongos , Microbiota/genética , Células-Tronco/citologia
10.
Genome Biol ; 16: 118, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062908

RESUMO

BACKGROUND: Interindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants. RESULTS: First, we screen for metastable epialleles by performing genomewide bisulfite sequencing in peripheral blood lymphocyte (PBL) and hair follicle DNA from two Caucasian adults. Second, we conduct a genomewide screen for genomic regions at which PBL DNA methylation is affected by season of conception in rural Gambia. Remarkably, both approaches identify the genomically imprinted VTRNA2-1 as a top environmentally responsive epiallele. We demonstrate systemic and stochastic interindividual variation in DNA methylation at the VTRNA2-1 differentially methylated region in healthy Caucasian and Asian adults and show, in rural Gambians, that periconceptional environment affects offspring VTRNA2-1 epigenotype, which is stable over at least 10 years. This unbiased screen also identifies over 100 additional candidate metastable epialleles, and shows that these are associated with cis genomic features including transposable elements. CONCLUSIONS: The non-coding VTRNA2-1 transcript (also called nc886) is a putative tumor suppressor and modulator of innate immunity. Thus, these data indicating environmentally induced loss of imprinting at VTRNA2-1 constitute a plausible causal pathway linking early embryonic environment, epigenetic alteration, and human disease. More broadly, the list of candidate metastable epialleles provides a resource for future studies of epigenetic variation and human disease.


Assuntos
Alelos , Metilação de DNA , Epigênese Genética , Genes Supressores de Tumor , Impressão Genômica , Proteínas Proto-Oncogênicas c-cbl/genética , Adulto , Povo Asiático/genética , População Negra/genética , Gâmbia , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Análise de Sequência de DNA , População Branca/genética
11.
Nat Commun ; 5: 3746, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24781383

RESUMO

In experimental animals, maternal diet during the periconceptional period influences the establishment of DNA methylation at metastable epialleles in the offspring, with permanent phenotypic consequences. Pronounced naturally occurring seasonal differences in the diet of rural Gambian women allowed us to test this in humans. We show that significant seasonal variations in methyl-donor nutrient intake of mothers around the time of conception influence 13 relevant plasma biomarkers. The level of several of these maternal biomarkers predicts increased/decreased methylation at metastable epialleles in DNA extracted from lymphocytes and hair follicles in infants postnatally. Our results demonstrate that maternal nutritional status during early pregnancy causes persistent and systemic epigenetic changes at human metastable epialleles.


Assuntos
Biomarcadores/sangue , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Fertilização/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Estações do Ano , Adulto , Feminino , Gâmbia , Folículo Piloso/química , Humanos , Linfócitos/química , Gravidez
12.
Nucleic Acids Res ; 42(6): e43, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24391148

RESUMO

Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitative accuracy has been reported. We sequenced bisulfite-converted DNA from two tissues from each of two healthy human adults and systematically compared five widely used Bisulfite-seq mapping algorithms: Bismark, BSMAP, Pash, BatMeth and BS Seeker. We evaluated their computational speed and genomic coverage and verified their percentage methylation estimates. With the exception of BatMeth, all mappers covered >70% of CpG sites genome-wide and yielded highly concordant estimates of percentage methylation (r(2) ≥ 0.95). Fourfold variation in mapping time was found between BSMAP (fastest) and Pash (slowest). In each library, 8-12% of genomic regions covered by Bismark and Pash were not covered by BSMAP. An experiment using simulated reads confirmed that Pash has an exceptional ability to uniquely map reads in genomic regions of structural variation. Independent verification by bisulfite pyrosequencing generally confirmed the percentage methylation estimates by the mappers. Of these algorithms, Bismark provides an attractive combination of processing speed, genomic coverage and quantitative accuracy, whereas Pash offers considerably higher genomic coverage.


Assuntos
Algoritmos , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Adulto , Mapeamento Cromossômico , Ilhas de CpG , Genômica/métodos , Humanos , Masculino , Sulfitos
13.
Hum Mol Genet ; 23(6): 1579-90, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24186871

RESUMO

Prenatal and early postnatal environment can persistently alter one's risk of obesity. Environmental effects on hypothalamic developmental epigenetics constitute a likely mechanism underlying such 'developmental programming' of energy balance regulation. To advance our understanding of these processes, it is essential to develop approaches to disentangle the cellular and regional heterogeneity of hypothalamic developmental epigenetics. We therefore performed genome-scale DNA methylation profiling in hypothalamic neurons and non-neuronal cells at postnatal day 0 (P0) and P21 and found, surprisingly, that most of the DNA methylation differences distinguishing these two cell types are established postnatally. In particular, neuron-specific increases in DNA methylation occurred extensively at genes involved in neuronal development. Quantitative bisulfite pyrosequencing verified our methylation profiling results in all 15 regions examined, and expression differences were associated with DNA methylation at several genes. We also identified extensive methylation differences between the arcuate (ARH) and paraventricular nucleus of the hypothalamus (PVH). Integrating these two data sets showed that genomic regions with PVH versus ARH differential methylation strongly overlap with those undergoing neuron-specific increases from P0 to P21, suggesting that these developmental changes occur preferentially in either the ARH or PVH. In particular, neuron-specific methylation increases at the 3' end of Shh localized to the ARH and were positively associated with gene expression. Our data indicate a key role for DNA methylation in establishing the gene expression potential of diverse hypothalamic cell types, and provide the novel insight that early postnatal life is a critical period for cell type-specific epigenetic development in the murine hypothalamus.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Epigênese Genética , Hipotálamo/crescimento & desenvolvimento , Núcleo Hipotalâmico Paraventricular/metabolismo , Animais , Animais Recém-Nascidos , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hipotálamo/citologia , Camundongos , Neurônios/metabolismo , Análise de Sequência de DNA
14.
Diabetes ; 62(8): 2773-83, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23545705

RESUMO

Decades of research in rodent models has shown that early postnatal overnutrition induces excess adiposity and other components of metabolic syndrome that persist into adulthood. The specific biologic mechanisms explaining the persistence of these effects, however, remain unknown. On postnatal day 1 (P1), mice were fostered in control (C) or small litters (SL). SL mice had increased body weight and adiposity at weaning (P21), which persisted to adulthood (P180). Detailed metabolic studies indicated that female adult SL mice have decreased physical activity and energy expenditure but not increased food intake. Genome-scale DNA methylation profiling identified extensive changes in hypothalamic DNA methylation during the suckling period, suggesting that it is a critical period for developmental epigenetics in the mouse hypothalamus. Indeed, SL mice exhibited subtle and sex-specific changes in hypothalamic DNA methylation that persisted from early life to adulthood, providing a potential mechanistic basis for the sustained physiological effects. Expression profiling in adult hypothalamus likewise provided evidence of widespread sex-specific alterations in gene expression. Together, our data indicate that early postnatal overnutrition leads to a reduction in spontaneous physical activity and energy expenditure in females and suggest that early postnatal life is a critical period during which nutrition can affect hypothalamic developmental epigenetics.


Assuntos
Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Atividade Motora/fisiologia , Adiposidade/genética , Animais , Animais Recém-Nascidos/metabolismo , Peso Corporal/fisiologia , Metilação de DNA , Feminino , Expressão Gênica , Masculino , Camundongos , Estado Nutricional , Obesidade/genética , Obesidade/metabolismo , Hipernutrição/genética , Hipernutrição/metabolismo
15.
Hum Mol Genet ; 19(11): 2168-76, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20197410

RESUMO

Monozygotic twin and other epidemiologic studies indicate that epigenetic processes may play an important role in the pathogenesis of inflammatory bowel diseases that commonly affect the colonic mucosa. The peak onset of these disorders in young adulthood suggests that epigenetic changes normally occurring in the colonic mucosa shortly before adulthood could be important etiologic factors. We assessed developmental changes in colitis susceptibility during the physiologically relevant period of childhood in mice [postnatal day 30 (P30) to P90] and concurrent changes in DNA methylation and gene expression in murine colonic mucosa. Susceptibility to colitis was tested in C57BL/6J mice with the dextran sulfate sodium colitis model. Methylation specific amplification microarray (MSAM) was used to screen for changes in DNA methylation, with validation by bisulfite pyrosequencing. Gene expression changes were analyzed by microarray expression profiling and real time RT-PCR. Mice were more susceptible to chemically induced colitis at P90 than at P30. DNA methylation changes, however, were not extensive; of 23 743 genomic intervals interrogated, only 271 underwent significant methylation alteration during this developmental period. We found an excellent correlation between the MSAM and bisulfite pyrosequencing at 11 gene associated intervals validated (R(2) = 0.89). Importantly, at the genes encoding galectin-1 (Lgals1), and mothers against decapentaplegic homolog 3 or Smad3, both previously implicated in murine colitis, developmental changes in DNA methylation from P30 to P90 were inversely correlated with expression. Colonic mucosal epigenetic maturation continues through early adulthood in the mouse, and may contribute to the age-associated increase in colitis susceptibility. Transcript Profiling: Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), accession numbers: GSE18031 (DNA methylation arrays), GSE19506 (gene expression arrays).


Assuntos
Colite/genética , Colo/citologia , Metilação de DNA/fisiologia , Suscetibilidade a Doenças/metabolismo , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Mucosa Intestinal/metabolismo , Fatores Etários , Animais , Colite/metabolismo , Biologia Computacional , Primers do DNA/genética , Mucosa Intestinal/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos
16.
PLoS Genet ; 6(12): e1001252, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21203497

RESUMO

Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs), conversely, epigenotype is established stochastically in the early embryo then maintained in differentiated lineages, resulting in dramatic and systemic interindividual variation in epigenetic regulation. In the mouse, maternal nutrition affects this process, with permanent phenotypic consequences for the offspring. MEs have not previously been identified in humans. Here, using an innovative 2-tissue parallel epigenomic screen, we identified putative MEs in the human genome. In autopsy samples, we showed that DNA methylation at these loci is highly correlated across tissues representing all 3 embryonic germ layer lineages. Monozygotic twin pairs exhibited substantial discordance in DNA methylation at these loci, suggesting that their epigenetic state is established stochastically. We then tested for persistent epigenetic effects of periconceptional nutrition in rural Gambians, who experience dramatic seasonal fluctuations in nutritional status. DNA methylation at MEs was elevated in individuals conceived during the nutritionally challenged rainy season, providing the first evidence of a permanent, systemic effect of periconceptional environment on human epigenotype. At MEs, epigenetic regulation in internal organs and tissues varies among individuals and can be deduced from peripheral blood DNA. MEs should therefore facilitate an improved understanding of the role of interindividual epigenetic variation in human disease.


Assuntos
Epigênese Genética , Loci Gênicos , Genética Médica , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Metilação de DNA , Feminino , Fertilização , Gâmbia , Humanos , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , População Rural , Estações do Ano , Gêmeos Monozigóticos/genética , Adulto Jovem
17.
Hum Mol Genet ; 18(16): 3026-38, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19457928

RESUMO

The question of whether DNA methylation contributes to the stabilization of gene expression patterns in differentiated mammalian tissues remains controversial. Using genome-wide methylation profiling, we screened 3757 gene promoters for changes in methylation during postnatal liver development to test the hypothesis that developmental changes in methylation and expression are temporally correlated. We identified 31 genes that gained methylation and 111 that lost methylation from embryonic day 17.5 to postnatal day 21. Promoters undergoing methylation changes in postnatal liver tended not to be associated with CpG islands. At most genes studied, developmental changes in promoter methylation were associated with expression changes, suggesting both that transcriptional inactivity attracts de novo methylation, and that transcriptional activity can override DNA methylation and successively induce developmental hypomethylation. These in vivo data clearly indicate a role for DNA methylation in mammalian differentiation, and provide the novel insight that critical windows in mammalian developmental epigenetics extend well beyond early embryonic development.


Assuntos
Metilação de DNA , Epigênese Genética , Fígado/crescimento & desenvolvimento , Camundongos/genética , Animais , Feminino , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos/embriologia , Camundongos/crescimento & desenvolvimento , Camundongos/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...